Хромосома 17 Смерть

Процесс накопления знаний означает не только воз­никновение новых связей между нейронами, но и удаление старых связей. В мозгу эмбриона нервные клетки образу­ют значительно более сложную сеть взаимосвязей, многие из которых разрываются и исчезают по мере взросления. Например, у новорожденных половина клеток зрительной коры головного мозга получает импульсы сразу от обоих глаз. Вскоре после рождения в результате радикального об­резания лишних аксонов происходит разделение зритель­ной коры больших полушарий на области, которые обраба­тывают информацию только от левого или правого глаза. Удаление несущественных связей ведет к функциональной специализации областей мозга. Точно так же скульптор ска­лывает лишние части в глыбе мрамора, чтобы освободить скрытое в ней произведение искусства. У слепых от рож­дения младенцев млекопитающих специализации зритель­ной коры мозга не происходит.

Устранение лишних связей между нервными клетками означает не только разрывы синапсов. Гибнут сами клетки. Мы столько раз слышали печальную историю о том, что нервные клетки гибнут и больше не восстанавливаются. За день можно потерять до 1 млн нервных клеток. Но вот у мыши с дефектным геном ced-9 нервные клетки не умирают, что не делает ее умнее. Напротив, такую мышь ждет печаль­ный конец с огромным, но совершенно неразвитым мозгом. У эмбрионов на поздних месяцах развития и у грудных де­

тей нервные клетки гибнут в мозгу с невероятной скоро­стью. Но это не результат болезни, а способ развития мозга. Если бы клетки не гибли, мы бы не могли думать (Hakem R. et al. 1998. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339-352).

Подталкиваемые определенными генами, к которым от­носится ген ced-9, здоровые клетки организма совершают массовый суицид. (Разные гены семейства ced вызывают гибель клеток других органов.) Гибель клеток осуществля­ется в строгом соответствии с предначертанным планом. Так, у микроскопического червя нематоды эмбрион перед рождением из яйца состоит из 1 090 клеток, но затем 131 из них погибает, оставляя взрослый организм ровно с 959 клетками. Эти клетки как будто приносят себя в жертву ради процветания организма наподобие солдат, которые с криком «За Родину» идут в смертельную атаку, или подобно рабочим пчелам, которые погибают, оставляя свое жало в теле незваного гостя. Аналогия, между прочим, не такая уж надуманная. Взаимоотношения между клетками организма действительно напоминают отношения между пчелами в улье. Предки всех клеток организма были когда-то свободно живущими одноклеточными организмами. Их «решение» организовать кооператив, принятое однажды 600 млн лет назад, было следствием тех же причин, которые заставили объединиться в семьи предков общественных насекомых (только произошло это гораздо позже, примерно 50 млн лет назад). Генетически родственные создания, в одном случае на клеточном уровне, а в другом — на уровне орга­низмов, оказались гораздо более устойчивыми к преврат­ностям судьбы, когда распределили между собой функции, оставив репродуктивную функцию в одном случае половым клеткам, а во втором — царице семейства (Ridley М. 1996. The origin of virtue. Viking, London; Raff M. 1998. Cell suicide for beginners. Nature 396:119-122).

Аналогия оказалась настолько хорошей, что позволила ученым лучше понять природу многих неинфекционных соматических заболеваний. Нередко среди солдат возни­кают мятежи, направленные против командования, да и среди пчел дисциплина поддерживается не только инстин­ктом, но и коллективной бдительностью и изгнанием лоды­рей из улья. На генетическом уровне лояльность рабочих пчел своей царице поддерживается тем, что пчелиная мат­ка спаривается сразу с несколькими самцами. Генетическая неоднородность потомства не дает возможности проявить­ся генам, направленным на развал семьи и на возврат к оди­ночному образу жизни. Проблема мятежа является острой также для клеток многоклеточных организмов. Постоянно некоторые клетки забывают о своем патриотическом дол­ге, который состоит в обеспечении всем необходимым по­ловых клеток. Вместо этого они начинают делиться и вести себя как самостоятельные организмы. В конце концов, каж­дая клетка является потомком свободно живущих предков. Прекращение деления идет вразрез с основной тенденцией развития всех живых организмов, а точнее, их генов, — вос­производить самих себя. Во всех тканях организма каждый день появляются мятежные произвольно делящиеся клет­ки. Если организм не сможет их остановить, возникает ра­ковая опухоль.

Но обычно у организма есть средства для подавления мятежа раковых клеток. Каждая клетка содержит систему генов, которые стоят на страже организма и включают про­грамму самоуничтожения при первых признаках бескон­трольного деления клетки. Наиболее известный ген кле­точного суицида, о котором написано множество статей, начиная с того дня, когда он был обнаружен в 1979 году, — это ген ТР53, лежащий на коротком плече хромосомы 17. В этой главе мы расскажем о проблеме рака с точки зрения генов, чья задача состоит в обеспечении самоликвидации раковых клеток.

В то время, когда Ричард Никсон в 1971 году объявил вой­ну раку, ученые практически ничего не знали о своем враге, помимо очевидного факта интенсивного деления клеток в пораженных тканях. Также было очевидно, что в большин­стве случаев онкология не является ни инфекционным, ни наследственным заболеванием. Общепризнанным было мнение, что рак — это не отдельное заболевание, а прояв­ление самых разнообразных нарушений функционирова­ния организма, часто связанных с воздействием внешних факторов, которые ведут к неконтролируемому делению клеток. Так, трубочисты «зарабатывают» рак мошонки в результате постоянного контакта с дегтем; рентгеновское или радиационное облучение ведет к белокровию; у куриль­щиков и строителей, работающих с асбестом, развивается рак легких и т.д. и т.п. Также было понятно, что влияние канцерогенных факторов может быть не прямым, а связан­ным с общим ослаблением иммунной системы организма.

На проблему рака под другим углом зрения удалось по­смотреть благодаря открытиям нескольких конкурирую­щих групп ученых. Так, в 1960 году Брюс Эймс (Bruce Ames) из Калифорнии показал, что общим между такими канце­рогенами как рентгеновское облучение и деготь является их способность разрушать ДНК. Эймс предположил, что причина рака кроится в генах.

Другое открытие произошло намного раньше, еще в 1909 году: Пейтон Роус (Peyton Rous) доказал инфекцион­ную природу саркомы цыплят. Его работа долго оставалась незамеченной, поскольку инфицирование довольно слож­но воспроизводилось в эксперименте. Но в 1960-х годах было описано множество новых онковирусов животных, включая вирус саркомы цыплят. В возрасте 86 лет Роус полу­чил Нобелевскую премию за свое давнее открытие. Вскоре были обнаружены онковирусы человека и стало ясно, что целую группу онкологических заболеваний, таких, как рак шейки матки, следует считать в некоторой степени инфек­ционными (Cookson W. 1994. The gene hunters: adventures in the genome jungle. Aurum Press, London).

Как только стало возможным секвенирование (прочте­ние) геномов организмов, ученые узнали, что известный вирус саркомы Роуса несет в себе особый ген, названный src, который ответствен за онкологическое превращение клеток. В геномах других онковирусов были обнаружены свои «онкогены». Так же, как и Эймс, вирусологи увидели генетическую природу онкологии. Но в 1975 году только появившаяся теория о роли генов в развитии рака была перевернута с ног на голову. Оказалось, что страшный ген src имеет совсем не вирусное происхождение. Это нормаль­ный ген любого организма — куриного, мышиного и нашего с вами, — который зловредный вирус саркомы Роуса просто стащил у одного из своих хозяев.

Более консервативные врачи долго отказывались при­знавать генетическую подоплеку онкологических заболева­ний — в конце концов, за исключением некоторых редких случаев, онкология не является наследственным заболе­ванием. Они забывали о том, что геном имеет свою исто­рию не только от поколения к поколению, но и в каждой отдельной клетке организма. Генетические заболевания в отдельных органах или отдельных клетках, хотя и не пере­даются по наследству, все же остаются классическими гене­тическими заболеваниями. В 1979 году, чтобы подтвердить роль генов в возникновении рака, онкологическая опухоль у мышей была вызвана экспериментально путем введения в клетки ДНК из раковых клеток.

У ученых сразу же возникли гипотезы относительно того, к какому классу генов могут относиться онкогены. Безусловно, это должны быть гены, ответственные за рост и деление клетки. Нашим клеткам нужны такие гены для пренатального роста эмбриона и для развития детей, а также для затягивания и заживления ран. Но чрезвычай­но важно, чтобы большую часть времени эти гены остава­лись выключенными. Неконтролируемое включение таких генов ведет к катастрофе. В «куче» из 100 триллионов по­стоянно делящихся клеток у онкогенов есть уйма возмож­ностей обойти запреты и остаться включенными даже без помощи таких мутагенов, как сигаретный дым или солнеч­ный ультрафиолет. К счастью, в клетках также есть гены, роль которых состоит в уничтожении быстро делящихся клеток. Первые такие гены были обнаружены в середине 1980-х годов Генри Харрисом (Henry Harris) из Оксфорда, и им было присвоено имя опухолевых супрессоров. Их действие противоположно активности онкогенов. Свою функцию они выполняют по-разному. Обычно происходит блокирование цикла развития клетки на определенной ста­дии до тех пор, пока механизмы внутреннего контроля не проверят состояние клетки. Если тревога была ложной, клетка будет разблокирована. Стало ясно, что для возник­новения раковой клетки в ней должно произойти два со­бытия: включение онкогена и разрушение гена-супрессора. Вероятность выполнения двух условий довольно мала, но и это еще не конец истории. Обманув гены-супрессоры, рако­вая клетка теперь должна пройти еще один более жесткий генетический контроль. Специальные гены активизируют­ся в результате неестественного деления клетки и дают ко­манду другим генам на синтез веществ, убивающих клетку изнутри. Эту роль берет на себя ген ТРЧГ

Ген ТР53 впервые был обнаружен Дэвидом Лэйном (David Lane) в Данди (Dundee), Великобритания. Сначала его при­няли за онкоген. Лишь позже стало известно, что его роль состоит в подавлении раковых клеток. Лэйн со своим кол­легой Питером Холлом (Peter Hall) как-то раз в пабе спори­ли о назначении гена ТР53, и Холл предложил на себе, как на морской свинке, доказать противораковую роль гена. Чтобы получить разрешение для проведения опытов на животных, нужно было ждать месяцы, а волонтер был ря­дом. Холл несколько раз облучил небольшой участок кожи на руке, а Лэйн в течение двух недель брал образцы ткани для биопсии. Было обнаружено существенное повышение содержания в клетках белка р53 — продукта гена TP у после­довавшее вслед за облучением. Эксперимент показал, что ген включается в ответ на действие канцерогенного факто­ра. Лэйн продолжил исследования белка р53 как противо­ракового препарата. К моменту выхода этой книги в свет в Данди должны были начаться клинические испытания препарата на группе добровольцев под контролем врачей. Небольшой шотландский городок в устье Тэи, который до сих пор славился лишь мешковиной и мармеладом, посте­пенно превращается в мировой центр онкологических ис­следований. Белок р53 стал уже третьим перспективным противораковым препаратом, разработанным учеными Данди.

Мутация в гене ТР,3 — одно из необходимых условий ле­тального рака. В 55% случаев рака у людей в раковых клет­ках обнаруживается дефект этого гена, а при раке легких мутация обнаруживается более чем в 90% случаев. У людей с врожденным дефектом гена ТР53 хотя бы на одной хро­мосоме вероятность возникновения онкологических забо­леваний в юном возрасте достигает 95%. Возьмем, напри­мер, рак прямой кишки. Обычно эта болезнь начинается с мутации в гене-супрессоре АРС. Если в развившемся по­липе произойдет следующая мутация в онкогене RAS, то на месте полипа появляется опухоль аденома. Заболевание переходит в более опасную фазу после третьей мутации в одном пока неопределенном гене-супрессоре. Но опухоль становится летальной карциномой только после того, как произойдет четвертая мутация в гене ТР53. Похожие схемы развития применимы к другим формам рака. И всегда по­следней происходит мутация в гене ТРЧГ

Теперь вы видите, почему ранняя диагностика рака так важна для его успешного лечения. Чем больше становится опухоль, тем большей становится вероятность очередной мутации как в силу общей теории вероятности, так и в ре­зультате все ускоряющейся частоты деления клеток, что ведет к ошибкам в геноме. У людей, предрасположенных к онкологическим заболеваниям, часто обнаруживается мутация в так называемых генах-мутаторах, что ведет к воз­растанию числа случайных мутаций в геноме. К таким ге­нам, скорее всего, относятся гены рака молочной железы, BRCA/ и BRCA2, о которых мы говорили при рассмотрении хромосомы 13. Раковые клетки находятся под прессом та­кого же эволюционного процесса, который довлеет над популяцией кроликов. Точно так же, как потомки быстро размножающейся пары кроликов вскоре вытесняют своих более пассивных соседей, в раковой опухоли линии быстро растущих клеток вытесняют умеренно растущие клетки. Так же, как в популяции кроликов выживают и оставляют потомство лишь те из них, кто умело прячется от сов и ли­сиц, в раковой опухоли из множества мутаций отбираются только те, которые помогают раковым клеткам успешно противостоять защитным силам организма. Развитие рако­вой опухоли происходит в точном соответствии с эволюци­онной теорией Дарвина. Несмотря на огромное разнообра­зие мутаций, течение онкологических заболеваний сходно в большинстве случаев. Мутации случайны, но направлен­ность селективного процесса и его механизмы одинаковы для всех людей.

Также становится понятным, почему вероятность возник­новения онкологических заболеваний удваивается с каждым десятилетием нашего возраста, являясь преимущественно болезнью пожилых людей. В результате случайных мутаций у части людей в популяции рано или поздно происходят му­тации в генах-супрессорах, таких как TP г или в онкогенах, что ведет к необратимым и часто фатальным последствиям. Доля онкологии среди причин смерти людей колеблется от 10 до 50% в обратной зависимости от уровня развития медицины. Чем лучше врачи справляются с другими забо­леваниями, тем дольше становится средняя продолжитель­ность жизни и, соответственно, тем больше мутаций чело­век успевает накопить, и тем более вероятным становится возникновение онкологических заболеваний. Вероятность того, что в результате случайных мутаций будут поврежде­ны важные гены-супрессоры и активизированы опасные онкогены, чрезвычайно мала. Но если мы умножим эту ве­роятность на число клеток в организме и число делений, то к определенному времени эта вероятность перейдет в зако­номерность. «Одна фатальная мутация на 100 триллионов клеточных делений становится не такой уж редкостью», — сказал по этому поводу Роберт Вайнберг (Robert Weinberg 1998. One renegade cell. Weidenfeld and Nicolson, London).

Давайте ближе познакомимся с геном ТР Ген состоит из 1 179 «букв» и кодирует довольно простой белок р53, ко­торый достаточно быстро разрушается в клетке другими белками и «живет» в среднем не более 20 мин. Более того, все это время белок р53 находится в неактивном состоя­нии. Но как только в клетке возникают определенные сиг­налы, синтез белка стремительно возрастает, а его деграда­ция ферментами клетки прекращается. Что это за сигналы, до сих пор не ясно. Определенно, фрагменты ДНК, обра­зующиеся в результате разрушения или неправильного ко­пирования хромосом, являются одним из таких сигналов. Разорванные фрагменты ДНК также влияют на активность самого белка р53. Как бойцы спецназа, молекулы белка бросаются в схватку. Можно представить себе, что лихой белок р53 выходит на сцену и заявляет: «С этого момента управление операцией я беру на себя». Основная функция белка р53 состоит во включении в работу других генов и белков. Дальше события развиваются по одному из следую­щих сценариев: либо клетка прекращает пролиферацию и репликацию ДНК до того момента, пока ситуацию прояс­няют специальные репаративные белки, либо включается программа на самоуничтожение.

Еще одним сигналом, активизирующим белок р53, яв­ляется недостаток кислорода в клетке, что характерно для раковой опухоли. Внутри быстро растущей опухоли нару­шается кровоснабжение, и клетки начинают задыхаться. Злокачественные новообразования справляются с этой проблемой за счет выработки специальных гормонов, ко­торые заставляют организм взращивать новые артерии для питания опухоли. Именно этим артериям, напоминающим клешни рака, опухоль обязана своим названием, используе­мым еще в Древней Греции. Целое направление в разработ­ке лекарств от рака посвящено поиску веществ, которые блокируют процесс ангиогенеза—образования новых крове­носных сосудов в раковой опухоли. Но обычно белок р53 разбирается в ситуации еще до того, как опухоль приступит к ангиогенезу, и уничтожает ее на ранних стадиях разви­тия. В тканях с плохим кровоснабжением, таких, как кожа, сигнал недостатка кислорода недостаточно четок, что по­зволяет опухоли развиться и нейтрализовать белок р53. Вероятно, поэтому меланома кожи столь опасна (Levine А. J. 1997. Р53, the cellular gatekeeper for growth and division. Cell 88: 323-331).

He удивительно, что белку p53 присвоили имя «защит­ник генома», или даже «Ангел-хранитель генома». Ген 7Р53 представляет собой что-то вроде капсулы с ядом во рту сол­дата, которая растворяется только при первых признаках измены. Такое самоубийство клеток называют стоппюзисом, от греческого слова, обозначающего осенний листопад. Это наиболее эффективное естественное средство борь­бы с раком, последняя линия обороны организма. Сейчас все больше накапливается сведений о том, что почти все современные успешные средства лечения рака так или ина­че оказывают влияние на белок р53 и его коллег. Раньше считалось, что эффект радиотерапии и химиотерапии сво­дится к разрушению ДНК в быстро делящихся клетках. Но если это так, почему в одних случаях лечение эффективно, а в других — не оказывает никакого эффекта? В развитии любой раковой опухоли наступает момент, когда ее клетки перестают реагировать на радио- и химиотерапию. Какова причина этого? Если терапия просто убивает растущие клетки, эффективность лечения должна только увеличи­ваться по мере ускорения роста опухоли.

Скотт Лоу (Scott Lowe) из лаборатории Колд-Сприн- Харбор нашел ответ на этот вопрос. «Противоопухолевая терапия действительно, повреждает в некоторой степени ДНК в растущих клетках, — сказал он, — но в недостаточ­ной степени, чтобы убить их». Зато фрагменты разрушен­ной ДНК являются лучшими стимуляторами активности белка р53, который запускает процесс самоуничтожения раковых клеток. Таким образом, радио- и химиотерапия больше напоминает вакцинацию — процесс активизации внутренних защитных сил организма. Вскоре появились экспериментальные данные, подтверждающие теорию Лоу. Облучение, а также химические вещества 5-фторурацил, этопозид и доксорубицин, часто используемые в химиоте- риппп, вызывали аиоитозис в лабораторной культуре тка­ней, инфицированной онковирусом. А в тех случаях, когда на поздних стадиях заболевания раковые клетки перестают реагировать на терапию, этому всегда сопутствует мутация в гене ТР У неподдающихся лечению опухолей кожи, лег­ких, молочной железы, прямой кишки, крови и простаты мутация в гене ТРЧЗ происходит еще на ранних стадиях раз­вития болезни.

Это открытие имело важное значение для поиска но­вых средств борьбы с раком. Вместо того чтобы искать вещества, убивающие растущие клетки, врачам следовало бы вести поиск веществ, запускающих процесс клеточно­го суицида. Это не означает, что химиотерапия бесполез­на, но ее эффективность явилась следствием случайного совпадения. Теперь, когда механизмы терапевтического влияния на раковые клетки становятся более понятными, можно ожидать качественного прорыва в создании новых лекарств. В ближайшей перспективе можно будет по край­ней мере избавить больных от лишних мук. Если врач с по­мощью генетического анализа установит, что ген ТР53 уже разрушен, то нет необходимости подвергать пациента бо­лезненной, но бесполезной терапии в последние месяцы его жизни (Lowe S. W. 1995. Cancer therapy and p53. Current Opinion in Oncology 7: 547-553).

Онкогены, в их нормальном немутированном состоя­нии, необходимы клеткам для роста и деления на протяже­нии жизни организма: кожа должна регенерировать, долж­ны формироваться новые клетки крови, срастаться кости, затягиваться раны и т.д. Механизмы подавления роста ра­ковых клеток должны регулироваться таким образом, что­бы не мешать нормальному росту и развитию организма. В организме есть средства, позволяющие клеткам не только быстро делиться, но и быстро прекращать рост в нужный момент. Лишь сейчас становится ясно, как эти механизмы реализуются в живой клетке. Если бы эти механизмы кон­троля были разработаны человеком, мы бы поражались его нечеловеческому гению.

И вновь ключевым элементом системы выступает апоп- тозис. Онкогены заставляют клетку расти и делиться, од­нако в то же время, как это ни удивительно, некоторые из них выступают в роли триггеров клеточного самоубийства. Например, ген MYC отвечает одновременно за рост и за смерть клетки, но его убийственная функция временно блокируется внешними факторами, называемыми сигнала­ми жизни. Если сигналы жизни прекращают поступать, а белок гена MYC все еще находится в активной форме, насту­пает смерть клетки. Творец, зная несдержанный характер гена MYC, снабдил его двумя противоположными функци­ями. Если в какой-то из клеток ген MYC выбивается из-под контроля, этот же ген ведет клетку к самоубийству сразу по­сле того, как прекращают поступать сигналы роста. Творец предпринял также дополнительные меры предосторожно­сти, увязав вместе три разных онкогена, MYC, BCL-г и RAS, так, чтобы они контролировали друг друга. Нормальный рост клетки возможен, только если все три гена координи­руют свою работу друг с другом. По словам ученых, открыв­ших этот феномен, «как только пропорции нарушаются, срабатывает затвор ловушки, и клетка оказывается мерт­вой или в таком состоянии, что уже не представляет собой онкологической угрозы» (Huber А.-0., Evan G. I. 1998. Traps to catch unwary oncogenes. Trends in Genetics 14: 364-367).

Моя история о белке р53, как и вся моя книга, должна послужить аргументом в споре с теми, кто считает генети­ческие исследования опасными для человечества и пред­лагает всячески ограничивать ученых в проникновении в тайны природы. Все попытки разобраться в работе слож­ных биологических систем, не прикасаясь к ним, ущербны и бесплодны. Самоотверженный труд врачей и ученых, в течение столетий изучавших рак, хотя и заслуживает при­знания, дал ничтожно мало по сравнению с достижениями последнего десятилетия, когда врачи получили в свои руки генетические методы исследований. Одним из первых идею проекта «Геном человека» озвучил в 1986 году ита­льянский лауреат Нобелевской премии Ренато Дулбекко

(Renato Dulbecco), который просто заявил, что это един­ственный способ победить рак. Впервые у людей появилась реальная возможность получить лекарство от рака — наибо­лее частой и ужасающей своей неотвратимостью причины смерти современных людей. И эта возможность была обе­спечена генетиками. Те, кто пугает людей мифическими монстрами генетических экспериментов, должны помнить об этом (Cook-Deegan R. 1994. The gene wars: science, politics and the human genome. W. W. Norton, New York).

Как только природа находит удачное решение одной про­блемы, этот же механизм используется для решения других проблем. Помимо выполнения функции устранения рако­вых клеток, апоптозис играет важную роль в противостоя­нии инфекциям. Если клетка обнаруживает, что заражена вирусом, для организма будет лучше, если она самоликви­дируется (заболевшие муравьи и пчелы также покидают ко­лонию, чтобы не заражать своих собратьев). Есть экспери­ментальные подтверждения суицида зараженных клеток, и известны механизмы, с помощью которых некоторые ви­русы пытаются заблокировать апоптозис клеток. Была от­мечена такая функциональность мембранного белка вируса Эбштейна-Барра, вызывающего мононуклеоз. Два белка у вируса папилломы человека, который вызывает рак шейки матки, блокируют ген ТР53 и другие гены-супрессоры.

Как я отмечал в главе 4, синдром Хантингтона вызывает незапланированный апоптозис нервных клеток мозга, ко­торые уже ничем не удается заменить. У взрослого челове­ка нейроны не восстанавливаются, поэтому повреждения головного и спинного мозга часто ведут к необратимым по­следствиям. Способность к размножению нейроны утрати­ли в ходе эволюции, поскольку в ходе развития организма каждый нейрон приобретает свою неповторимую функцио­нальную уникальность и особое значение в сети нейронов. Замена нейрона молодой, наивной и неопытной клеткой принесет больше вреда, чем пользы. Поэтому апоптозис зараженных вирусами нейронов в отличие от апоптозиса в других тканях приводит лишь к эскалации заболевания.

Некоторые вирусы по неизвестным пока причинам актив­но стимулируют апоптозис нервных клеток, в частности энцефалитный альфавирус (Krakauer D. С., Payne R. J. Н. 1997. The evolution of virus-induced apoptosis. Proceedings of the Royal Society of London, Series В 264: 1757-1762).

Апоптозис играет важную роль в элиминации активных транспозонов. Особо строгий контроль над эгоистичными генами установлен для половых клеток. Было определен­но, что контрольные функции берут на себя фолликуляр­ные клетки яичников и клетки Сертоли в семенниках. Они индуцируют апоптозис в созревающих половых клетках, если в них обнаружены хоть какие-то признаки активности транспозонов. Так, в яичниках пятимесячного эмбриона женского пола находится до 7 млн яйцеклеток. К моменту рождения из них остается только 2 млн, и только около 400 яйцеклеток произведут яичники в течение жизни женщи­ны. Все остальные клетки, которые строгие контролеры посчитали недостаточно совершенными, получают коман­ду на самоубийство. Организм — это тоталитарное деспо­тичное государство.






 

Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Наверх